SYNTHETIC STUDIES OF SOME USEFUL BUILDING BLOCKS FOR PREPARATION OF THE NOVEL TERTIARY ALKYL FLUORIDES

Y. Takeuchi,* A. Kanada, S. Kawahara, and T. Koizumi

Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, Sugitani 2630, Toyama 930-01 (JAPAN)

Some synthetic routes to the novel structure of tertiary alkyl fluorides 10 have been developed utilizing the three key compounds, 1, 2, and 9.

Alkylation of 1 or 2 with Bu₃SnR², active olefin / Bu₃SnH, or R'CHO / Zn produced the dialkylated fluoroester 3. Reduction of 3 with LiAlH₄ gave β -fluoroalcohol 4. Halogenation of 4 was accomplished with Ph₃P / CX₄ to afford β -fluorohalide 5 which can be transformed to the target structure 10. Saponification of 3 with NaOH yielded the acid 6, which was converted to the corresponding chloride 7 by treatment with (COCl)₂. Coupling of 7 with Grignard reagent successfully produced the tertiary fluoride 10. The chloride 7 could be also converted (NHTP / BrCCl₃) to α -bromofluoroalkane 8, which was alkylated with Bu₃SnR³ to give 10.

Direct introduction of the third alkyl group (R³) was also attempted. α-Fluoro-nitroalkane 9 was obtained from 1 by dealkoxycarbonylation (NaBH₄ or NaOH) followed by alkylation with active olefin. Denitrative alkylation of 9 was achieved with active olefin / Bu₃SnH to afford the target structure 10, although in low yield.